lunes, 29 de noviembre de 2010

Origenes de los nombres de los Planetas

El nombre en castellano de los planetas del Sistema Solar, con excepción de la Tierra, corresponde al nombre de algunas divinidades de las mitologías romana o griega:

Mercurio es el dios romano del comercio;
Venus es la diosa romana del amor y de la belleza;
Marte es el dios de la guerra;
Júpiter es el dios supremo del panteón romano;
Saturno es el dios romano de la agricultura;
Urano es el dios griego del cielo;
Neptuno es el dios romano de los mares.

En diferentes culturas los días de la semana provienen de los nombres de los dioses asociados con cada uno de estos astros. Lunes por la Luna, Martes por Marte, Miércoles por Mercurio, Jueves por Júpiter, Viernes por Venus, excepto Sábado por el Sabbath y Domingo por la resurrección de Jesucristo: die domini (día del Señor en latín). En inglés aún se conserva la denominación Saturday (día de Saturno) para el Sábado, y Sunday (día del Sol) para el domingo. Los satélites mayores de los diferentes planetas reciben su nombre de personajes mitológicos, excepto los satélites de Urano, cuyos nombres conmemoran personajes de obras clásicas de teatro. Otros cuerpos menores del Sistema Solar reciben su nombre de diversas fuentes: mitológicas (Plutón, Sedna, Eris, Varuna o Ceres), de sus descubridores (cometas como el Halley) o de códigos alfanuméricos relacionados con su descubrimiento.

Planetas externos al Sistema Solar

Planetas extrasolares

Desde 1988 el descubrimiento de Gamma Cephei Ab, confirmó una serie de descubrimientos que se han hecho de planetas en órbita alrededor de estrellas distintas del Sol. De los 267 planetas extrasolares descubiertos a fecha de noviembre de 2007, la mayoría de ellos tienen masas que son comparables o mayores que Júpiter. Entre las excepciones se incluyen una serie de planetas descubiertos en órbita alrededor de los restos quemados de estrellas llamados púlsares, como PSR B1257 +12, los planetas en órbita alrededor de las estrellas: Mu Arae, 55 Cancri y GJ 436, que son aproximadamente del tamaño de Neptuno, y un sistema planetario que contiene al menos dos planetas en órbita alrededor de Gliese 876.
No está nada claro si los grandes planetas recién descubiertos se parecen a los gigantes gaseosos en el Sistema Solar o si son de un tipo de gas distinto aún no confirmado, como el amoníaco o el carbono. En particular, algunos de los planetas recién descubiertos, conocidos como Jupiters calientes, orbitan muy cerca de sus estrellas padre, en órbitas casi circulares, por lo que reciben mucho más la radiación estelar que los gigantes de gas en el Sistema Solar, lo que hace preguntarse si son absolutamente el mismo tipo de planeta. También existe una clase de Jupiters calientes que orbitan tan cerca de su estrella que sus atmósferas son lentamente arrancadas: los planetas Chthonianos.
Para una observación más detallada de planetas extrasolares será requerida una nueva generación de instrumentos, incluidos los telescopios espaciales. En la actualidad, la nave espacial CoRoT está a la búsqueda de variaciones de luminosidad estelar debido al tránsito de planetas. Varios proyectos han propuesto también la creación de un conjunto de telescopios espaciales para la búsqueda de planetas extrasolares con masas comparables a la de la Tierra. Estos incluyen el proyecto de la NASA Kepler Mission, Terrestrial Planet Finder, y programas de la Misión Espacial de Interferometría, el Darwin de la ESA, el CNES y la PEGASE. The New Worlds Misión es un dispositivo oculto que puede trabajar en conjunto con el telescopio espacial James Webb. Sin embargo, la financiación de algunos de estos proyectos sigue siendo incierto. La frecuencia de ocurrencia de tales planetas terrestres es una de las variables en la ecuación de Drake, que estima el número de planetas con seres inteligentes, con civilizaciones con las que comunicarnos nuestra galaxia.
Planetas interestelares

Varias simulaciones por ordenador de evolución estelar y formación de los sistemas planetarios han sugerido que algunos objetos de masa planetaria habría sido expulsados al espacio interestelar. Algunos científicos han argumentado que esos objetos encontrados vagando en el espacio deben ser clasificados como "planetas". Sin embargo, otros han sugerido que podrían ser estrellas de baja masa. La definición de la UAI sobre planetas extrasolares no toma posición sobre la cuestión.
En 2005, los astrónomos anunciaron el descubrimiento de Cha 110913-773444, la enana marrón más pequeña encontrada hasta la fecha, con sólo siete veces la masa de Júpiter. Ya que no se encuentran en órbita alrededor de una estrella de detonación, es una sub-enana marrón, de acuerdo con la definición de la UAI. Sin embargo, algunos astrónomos creen que debería ser denominada como planeta. Durante un breve tiempo en 2006, los astrónomos creían que habían encontrado un sistema binario de los objetos, Oph 162225-240515, que los descubridores describen como "planemos", u "objetos de masa planetaria". Sin embargo, los últimos análisis de los objetos ha determinado que sus masas son mayores que 13 masas de Júpiter; que es el tope de masa que debe tener un planeta para que en su núcleo no se produzcan combustiones termonucleares, es decir, para que no sea una estrella.

Archivo:OGLE-2005-BLG-390Lb.jpg


 


Clasificacion de los Planetas

Los planetas del Sistema Solar se clasifican conforme a dos criterios: su estructura y su movimiento aparente.

Según su estructura

Planetas terrestres o telúricos: pequeños, de superficie rocosa y sólida, densidad alta. Son Mercurio, Venus, la Tierra y Marte. También son llamados planetas interiores.
Planetas jovianos (similares a Júpiter): grandes diámetros, esencialmente gaseosos (hidrógeno y helio), densidad baja. Son Júpiter, Saturno, Urano y Neptuno, los planetas gigantes del Sistema Solar. También son llamados planetas exteriores.
Respecto a Plutón, según el acuerdo tomado el día 24 de agosto de 2006 por la Unión Astronómica Internacional sobre una nueva definición de planeta, se le considera dentro de la categoría de planeta enano. Los primeros asteroides descubiertos fueron también denominados temporalmente como planetas, como Ceres, que al igual que otros asteroides llegaron incluso a tener su símbolo planetario, hasta que fue evidente que formaban parte de toda una familia de objetos: el cinturón de asteroides.

Según sus movimientos en el cielo

La teoría geocéntrica clasificaba a los planetas según su elongación:
Los planetas inferiores eran aquellos que no se alejaban mucho del Sol (ángulo de elongación limitado por un valor máximo) y que, por tanto, no podían estar en oposición, como Mercurio y Venus.
Los planetas superiores eran aquellos cuya elongación no está limitada y pueden, por tanto, estar en oposición.
Aunque coincida con lo que se llama planetas interiores y exteriores en la Teoría heliocéntrica, no deben confundirse ambos conceptos. El comportamiento observado por la teoría geocéntrica, y que daba lugar a la clasificación de los planetas en inferiores y superiores, se explica por el hecho de ser interiores o exteriores a la órbita de la Tierra.

Planetas



Archivo:Solar planets.jpg

Un planeta es, según la definición adoptada por la Unión Astronómica Internacional el 24 de agosto de 2006, un cuerpo celeste que:


1.Tiene suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuma una forma en equilibrio hidrostático (prácticamente esférica).

2.Ha limpiado la vecindad de su órbita de planetesimales.

Según la definición mencionada, el Sistema Solar consta de ocho planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Plutón, que hasta 2006 se consideraba un planeta, ha pasado a clasificarse como planeta enano, junto a Ceres, también considerado planeta durante algún tiempo, ya que era un referente en la ley de Titius-Bode, y más recientemente considerado como asteroide, y Eris, un objeto transneptuniano similar a Plutón. Ciertamente desde los años 70 existía un amplio debate sobre el concepto de planeta a la luz de los nuevos datos referentes al tamaño de Plutón (menor de lo calculado en un principio), un debate que aumentó en los años siguientes al descubrirse nuevos objetos que podían tener tamaños similares. De esta forma, esta nueva definición de planeta introduce el concepto de planeta enano, que incluye a Ceres, Plutón, Haumea, Makemake y Eris; y tiene la diferencia de definición en (2), ya que no ha despejado la zona local de su órbita y no es un satélite de otro cuerpo.
Los cuerpos que giran en torno a otras estrellas se denominan generalmente planetas extrasolares o exoplanetas. Las condiciones que han de cumplir para ser considerados como tales son las mismas que señala la definición de planeta para el Sistema Solar, si bien giran en torno a sus respectivas estrellas. Incluyen además una condición más en cuanto al límite superior de su tamaño, que no ha de exceder las 13 masas jovianas y que constituye el umbral de masa que impide la fusión nuclear de deuterio.Etimológicamente, la palabra planeta proviene del latín que la tomó del griego πλανήτης planētēs ("vagabundo, errante"), y de planaö ("yo vagabundeo"). El origen de este término proviene del movimiento aparente de los planetas con respecto al fondo fijo de las estrellas que, a pesar de moverse por el firmamento según las diferentes estaciones, mantienen sus posiciones relativas.





domingo, 28 de noviembre de 2010

Sistema Solar

Caracteristicas
El Sistema Solar es un sistema planetario de la galaxia Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión. Según las últimas estimaciones, el Sistema Solar se encuentra a unos 28 mil años-luz del centro de la Vía Láctea.
Está formado por una única estrella llamada Sol, que da nombre a este Sistema, más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea y Ceres), asteroides, satélites naturales, cometas... así como el espacio interplanetario comprendido entre ellos.

Los planetas y los asteroides orbitan alrededor del Sol, en la misma dirección siguiendo órbitas elípticas en sentido antihorario si se observa desde encima del polo norte del Sol. El plano aproximado en el que giran todos estos se denomina eclíptica. Algunos objetos orbitan con un grado de inclinación considerable, como Plutón con una inclinación con respecto al eje de la eclíptica de 18º, así como una parte importante de los objetos del cinturón de Kuiper. Según sus características, y avanzando del interior al exterior, los cuerpos que forman el Sistema Solar se clasifican en:
  • Sol. Una estrella de tipo espectral G2 que contiene más del 99% de la masa del sistema. Con un diámetro de 1.400.000 km, se compone, de un 75% de hidrógeno, un 20% de helio y el 5% de oxígeno, carbono, hierro y otros elementos.
  • Planetas. Divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
En el año 2006, una convención de astronomía en Europa declaró a Plutón como planeta enano porque no reúne las características necesarias para ser llamado planeta.
  • Planetas enanos. Esta nueva categoría inferior a planeta la creó la Unión Astronómica Internacional en agosto de 2006. Se trata de cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente para haber atraído o expulsado a todos los cuerpos a su alrededor. Cuerpos como Plutón (hasta 2006 considerado noveno planeta del Sistema Solar), Ceres, Makemake y Eris están dentro de esta categoría.
  • Satélites. Cuerpos mayores orbitando los planetas, algunos de gran tamaño, como la Luna, en la Tierra, Ganímedes, en Júpiter o Titán, en Saturno.
  • Asteroides. Cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular.
  • Objetos del cinturón de Kuiper. Objetos helados exteriores en órbitas estables, los mayores de los cuales serían Sedna y Quaoar.
  • Cometas. Objetos helados pequeños provenientes de la Nube de Oort.
El espacio interplanetario en torno al Sol contiene material disperso proveniente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas formando un plasma que es expulsado por el Sol en el viento solar. El límite exterior del Sistema Solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15.000 millones de kilómetros del Sol).
Los diferentes sistemas planetarios observados alrededor de otras estrellas parecen marcadamente diferentes al Sistema Solar, si bien existen problemas observacionales para detectar la presencia de planetas de baja masa en otras estrellas. Por lo tanto, no parece posible determinar hasta qué punto el Sistema Solar es característico o atípico entre los sistemas planetarios del Universo.

Ley de gravitacion universal

La ley de Gravitación Universal es una ley clásica de la gravitación presentada por Isaac Newton en su libro publicado en 1687, Philosophiae Naturalis Principia Mathematica que establece una relación cuantitativa para la fuerza de atracción entre dos objetos con masa.

Todo objeto en el universo que posea masa ejerce una atracción gravitatoria sobre cualquier otro objeto con masa, aún si están separados por una gran distancia. Según explica esta ley, mientras más masa posean los objetos, mayor será la fuerza de atracción, y además, mientras más cerca se encuentren entre sí, mayor será esa fuerza también, según una ley de la inversa del cuadrado.
Considerando dos cuerpos cuya extensión (tamaño) sea pequeña comparada con la distancia que los separa, podemos resumir lo anterior en una ecuación o ley diciendo que la fuerza que ejerce un objeto con masa m1 sobre otro con masa m2 es directamente proporcional al producto de ambas masas, e inversamente proporcional al cuadrado de la distancia que los separa, es decir:
(1) F = G \frac {m_{1}m_{2}} {d^2}
Donde
m1 y m2 son las masas de los dos cuerpos
 \scriptstyle d es la distancia que separa sus centros de gravedad y  \scriptstyle G es la constante de gravitación universal.
En la fórmula se puede notar la inclusión de G, la constante de gravitación universal. Newton no conocía el valor de esta constante, sólo indicó que se trata de una constante universal, que es un número bastante pequeño, y cuál es su unidad de medida. Sólo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión.

Leyes de Kepler

Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus orbitas alrededor del sol. Aunque él no las enunció en el mismo orden, en la actualidad las leyes se numeran como sigue:
  • Primera Ley : Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos.
  • Segunda Ley (1609): El radio vector que une un planeta y el Sol barre áreas iguales en tiempos iguales.
ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio). En el afelio y en el perihelio, el momento angular L es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol.

L = m \cdot r_1 \cdot v_1 = m \cdot r_2 \cdot v_2 \,

  • Tercera Ley (1618): Para cualquier planeta, el cuadrado de su período orbital es directamente a de su órbita elíptica. proporcional al cubo de la longitud del semieje mayor
\frac{T^2}{a^3}=K=\text{constante}
Donde, T  es el periodo orbital (tiempo que tarda en dar una vuelta alrededor del Sol), a  la distancia media del planeta con el Sol y K  la constante de proporcionalidad.
Estas leyes se aplican a otros cuerpos astronómicos que se encuentran en mutua influencia gravitatoria como el sistema formado por la Tierra y la Luna.